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ABSTRACT

Consider the model

x(t) = As(t) + n(t), t = 1,...,N

where at time t, x(t) is a p-complex vector of observations, 9(t) is a

q-complex vector of unobservable signals emitted from q sources and n(t) is

a noise p-complex vector variable. It is assumed that (j(t)) and n(t)}

are independent sequences with

E[n(t)n(t)] = o2I, E[(t)s(t*)] r

E[x(t)x(t)* ArA * i02I

The matrix A has a special structure with its k-th column Ik of the form

= (1,e ...,e



-2-

where j = ,C ", rk = c-1 Asin~k, Ok being the direction of arrival of the

signal from the k-th source. The problem is the estimation of q (the

number of sources) and 0i's (the directions of arrival).

The paper presents an information theoretic criterion to decide on q,

the number of sources, and a spectral analytic method to estimate the ri's.

The proposed method is straight forward and has some advantages over the

search methods proposed in the literature for the latter problem. For

instance, our method works even when the signals are coherent, i.e., the

covariance matrix r of signal is singular, whereas the MUSIC algorithm

generally used in searching for the estimates of rk is not applicable.

Key Words and Phrases: Akaike information criterion, Direction of
arrival, General information criterion, Signal processing.

ANS Classification Index: Primary 62F12: Secondary 62H12

1. INTWTI0tf

The problems of estimation of the number of signals and the directions

of their arrival have been considered by a number of authors under the

model c
copy

I'VSPceco~x(t) =As(t) + n(t), t a 1,...,N (1.1

where at time t,

x(t) is a p-complex vector of observations received by A
p-sensors uniformly spaced,

s(t) is a q-complex vector of unobservable signals, and
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n(t) is an additive p-complex noise vector.

It is assumed that (n(t)), (s(t)), t = 1,...,N, are independent sequences

of iid random variables such that

E(n(t)] = 0, E[n(t)n(t)*] = 2 I

E[s(t)] = 0, E[s(t)s(t)*] = r (1.2)

where the star sign indicates the complex conjugate. Then we have

E = E[x(t)x(t)*] = AIA * + a21. (1.3)

We generally assume that the signals are not coherent, i.e., the matrix F

is positive definite. However, this condition is not necessary for the new

method of estimation we develop in Section 4 of this paper.

The pxq matrix A has the special structure

A =(a :.:a)
1 q

a =a(rk) = (1,e-jw Ork ...,-jO(p-1)rk (1.4)

where j =1T, Tk =C-A sinok, c = speed of propogation, *k is the

direction of arrival (DOA) from the k-th source and A is the inter

sensor distance. We may take wo to be unity without loss of generality.

There are two important problems connected with the model (1.1, 1.2).

One is the estimation of q, the number of signals (i.e., the choice of the

model), and another is the estimation of rq,j providing the
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estimates of 1, ... 0q, the directions of arrival. We discuss these two

problems with references to earlier work and propose new solutions.

2. INFORMATION THEORETIC CRITERIA FOR MOEL SELECTION

In view of the assumptions (1.2), if we assume that n(t) has a

p-variate complex normal distribution, then the statistic

S = N-E x(t)x(t)* (2.1)

has a complex Wishart distribution with N degrees of freedom and covariance

matrix E = ArA* + o2 I as in (1.3). If the covariance matrix of the

signals is nonsingular, then the number of signals is q = p-s where s

is the multiplicity of the smallest root of E. Hence the problem of

estimating q can be studied within the framework of testing the equality

of a given number of smallest eigen values of E, for which a statisfactory

solution exists (see for instance Anderson (1963), Ligget (1973), Rao

(1973, 1983), Schmidt (1981), Tuft and Kumaresan (1980), Wax, Shan and

Kailath (1984)).

The log likelihood based on observed data, apart from an additive

constant, is

= -qlog IEI + tr [1S] (2.2)

where q indicates the number of signals. The maximum of (2.3) for given

q is

2 q) log 1i + (p-q)log q+1+''].(2.3)N 22.3)
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where " p are the eigen values of S assumed to be distinct

(with probability 1). The likelihood ratio statistic for testing the

equality of the last p-q eigen values of E is

G( 2( (-_~q) = NCp-q)log 101- lo( ... IN N p-q qi p
(2.4)

which is asymptotically distributed as X2 on (p-q)2 degrees of

freedom (d.f.). Let

q = max (q: ) C)

where Ca  is the upper tail ao point of X2 on (p-q)2 _ 1 d.f. Then an

A
upper (1-a)% confidence limit to q is q.

However, to get a point estimate of q, we can use a general

information criterion (GIC) developed by Zao, Krishnaiah and Bai (1986)

GICN - (k)CN (2.5)

where Y(k) is the number of free parameters in the model and CN is a

function of N such that as N -6

-- 0 and -- a. (2.6)

In the present problem Y(k) = q(2p-q) + 1, and the decision (estimatie-.)
A

rule is the choose q = q where
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GIC( q) = max GIC(k). (2.7)
k

It is shown by Zhao, Krishnaiah and Bai (1986) that under the condition

(2.6), the GIC rule (2.7) is strongly consistent, i.e.,

A

q + q a.s. as n 4U. (2.8)

Criteria of the kind (2.7) for model selection have been used earlier

with special choices:

CN = 2, Akaike

= log N, Kashyap, Schwartz, Rissanen

= c loglog n, for some c > 2, Hannan and Quinn.

All these choices except Akaike's give a consistent estimate of q. There

are, however, no adequate studies on the choice of CN in finite samples.

Rao and Wu (1989) indicated an adaptive method for choosing CN in a

similar context. Further research in this direction is necessary.

3. ESTIMATION OF DOA: NOISE SPACE MMTOD

For a given q, the eigen values of E are of the form

' q > Cq+ = a 2 ). (3.1)

Let e,,.. ~ ''" p be the corresponding eigen vectors and define

the matrices

Es e), En e e). (3.2)
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The spaces spanned by the vectors in E. and En may be called the signal

and noise eigen spaces, respectively. It is easily seen that

a(r)'n =0 * D(r) ,a(r) ( EA(r) = 0 (3.3)

for r = ri, i = 1,...,q, as defined in (1.4). In practice we have only

the estimate S (as defined in (2.1)) of E. The eigen values and eigen

vectors of S

i >  ... > I q >  ..>  I p
A A A
el, .... eq, ... , eq (3.4)

provide consistent estimates of the corresponding eigen values (3.1) and

eigen vectors (3.2) of the true E. An estimate of En spanning the noise

eigen space is

A A A
En !(+1... ,!p)- (35)

The function

AA
D(r) = a(r) EnEna(r) (3.6)

which is an estimate of D(r) defined in (3.3) may not vanish for any r,

but is likely to be small in the neighborhood of r, ...,rq , Then they may

,A

be estimated by plotting I(r) and locating the peaks, which is the

basis of the MUSIC algorithm (see papers by Bienvenu (1979), Schmidt (1981)

and Wax, Shan and Kailath (1984)). As the solutions are obtained

essentially by a search method, their analytical characterization is

complicated so that the statistical properties of the estimates are

difficult to study. We propose an alternative simple computational
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technique which provides definitive estimates and which enable us to study

their asymptotic properties.

We note that there exists a matrix G of order pxr (with r written

for p-q)

G = (Gil..., rG (3.7)

where Gk is of the form

9= (0, ... o,gi,..., 0,...,O)', k = 1,...,r, (3.8)

with the first k and the last (p-k-q-1) components as zeroes
I

gq+1 > 0, glg1 + ... + g gq+ = 1 such that a(r) G = 0, for

7 = Ti,..., k, and exp(jr 1),...,exp(j k ) are the solutions of the

polynomial equation

gq+1zq + ... + g 0 = . (3.9)

Then the strategy is to estimate g= (g1,'",gq 1 ) and use them in (3.9)

to obtain the roots which provide the estimates of rl ....Tk*

Since the columns of G generate (i.e., provide a basis of) the noise

eigen space En  of E, the statistical problem of estimating G may be

thought of as fitting a basis of the type Gi,...,G r  to the estimated
Anoise eigen space En given in (3.5). The mathematical problem may be

formulated as that of minimizing the Euclidean norm

AEn -G ( 3.10 )
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with respect to a matrix G of the type (3.7) and an arbitrary matrix B of

order rxr.

As the optimization problem (3.10) is complicated, we suggest some

alternative procedures. By Householder transformation (for which reliable

software exists), i.e., multiplying by an unitary matrix 0 of order r, we
A

can convert En  into the form

A

E o  H u u) (3.11)

where uq+i = (u,q+i'''".,q+i,q+i''"...,0) i = 1,...,r, with

uq+q+i * 0 (with probability 1). We may choose !q+l as an estimate

of (g1,... gq+) , solve the equation

zqz)+u.u I  = 0 (3.12)

B(z) Uq+lq+i ... ,q+=

obtain the roots in the form

A

A r1k

pke k k= 1,...,q (3.13)

A A
and choose rl,...,rq as estimates of rV,...,r q .

To obtain the asymptotic distribution of the estimates, we introduce

some conditions.

(A1) The second moment of x(t) exists.

(A2) The fourth moment of x(t) exists.
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(A3) cov[Re s(t)] = cov[Im s(t)] = 2-1Re r

E[(Re s(t))(Im s(t))'] = -E[C(Im s(t))(Re s(t))'] = Im r

(A4) cov[Re (t)] = cov[Im (t)] = 2-1a2 p

cov[Re E(t), Im E(t)] = 0

(A5 ) E(Re Ek(t))4 = E(Im Ek(t)) 4 - k = 1,...

E(Re ek(t)) (Re c h(t))2 = E(Im Ek(t))
2 (I, Eh(t))2 = 4-10 4

E(Re Ek(t))2(Ia Eh(t)) 2 = 4-10 4  k,h = 1,...,p

and all other kinds of fourth moments are zero.

The following theorems concerning the asymptotic properties of the

estimators are established in Bai, Miao and Rao (1990).

Theorem 1. Under the condition (A1),

A A A Ias 0
( ,.,q) =(7, .) (3.14)

Theorem 2. Under the conditions (A2)-(A ) the limiting distribution

of

A A A A A
-*' P1 -P1  ,Pq-q) + j '~r- 1  , (3.15)AN + jTn ... )+ jr ( Ir t.... rq-T q)( .5

is q-variate complex normal with zero mean and covariance matrix

G-I[a4F 1'(A*A)-Ir + 0u2r-I](G-1)* (3.16)



whu re

G = diag(D(rI),...,D(r q))

ik ir r(ejke - eii)e , k = 1,...,q.
D(rk) = gq~1 i=t,isk

A A A
The asymptotic covariance matrix of TN = N(rI-ri ,..., rq-Tq) alone is

2-1Re[G:- ! (o4r - 1 (A*A)-1I +02F- I )G- ! ] (3.17)

Remark 1. Note that s is a basis of the eigen space

A A
spanned by !q+s+l'''"!p, so that if the number of signals is q+s, then

the corresponding g-vector with q+s+l components is estimated by 24+s+l"

In practice, it is advisable to estimate the r parameters starting with a

somewhat higher value than what is indicated by the GIC criterion, study

the configuration of the roots as done by Tuft and Kumaresan (1980) and

take a final decision on the choice of q and estimate the r parameters.

The computational algorithm outlined above is ideally suited to such an

analysis.

Remark 2. We can by postmultiplying H in (3.11) by a matrix B

reduce it to the form

= (Mq.I'Zq+2 . P (3.18)

where =qi Z (O', ''O' ,q+i'**"'Vq+tq+i 0,...,0) with i-1 zeroes in the

beginning and flvq+ij = 1. Then a possibly improved estimate of gj in

(gp ...,gq+1 ) is
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+ vj + + v. , j = 1,...,q+1. (3.19)
9j p-q uj,q+i + j,q+2+"'+Vp

The actual improvement in the estimate (3.19) needs to be studied.

Remark 3. There is a unique vector of the type ,+ in the space
A

generated by the columns of E. This can be obtained in a simple way,

without going through Householder transformation, as shown below. We
A

partition EN in the form

Ni I
A (q+1)x(p-q)
En A (3.20)

px(p-q) ( - q

and solve the equation

A I
EN2b = 0, b = (b1,...,b )  (3.21)

The solution of (3.21) is unique (with probability 1) apart from a

scalar multiplier. Then

0 A

apart from a scalar multiplier.

4. ESTIMATION OF DOA: DIRECT APPROACH

Let us write G as defined in (3.8) in the partitioned form



-13-

G= ( 0 0 (4.1)

lx(i-1) lX(q+l) 1x(p-q-i)

where

= (g1,... ,gq+) , gq+ > 0, JlgJJ - 1, A g = 0. (4.2)

Since Gi is an eigen vector of E a ArA* + o21 corresponding to the

smallest eigen value ou for each i, it follows that for any chosen

non-negative V ,,..I... pq

P-q -q (4.3)

E Yk Gk E 2k= g*( E LYkEko)g 4 g*Eg(.3
1 1

attains the minimum value r (1, + ... + v' ) at satisfying (4.2),

where Eko is the matrix obtained from E by retaining only the k-th to

(k+q)-th columns and rows. Then g may be estimated by minimizing

Pe kGk* t k, subject to (4.2). (4.4)
1

Writing ko for the (q+l)x(q+l) matrix obtained by retaining only the

k-th to (k+q)-th columns and rows in t, the expression (4.4) can be

written as

g (PE Lko)g 1 (4.5)
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A

so that X, the estimate of g, is the eigen vector of to corresponding

to its smallest eigen value. Then we solve the polynomial equation

A~ z k  AAk+ . + gl = 0 (4.6)

as in Section 3. Writing the roots in the form zk = A exp(jrk),

AA A

k - 0, Tk E (0,2r), we obtain the estimate of Tk as k = 1,...,q.

Note that in (4.3)

Pq q _ (2 Pq(47)

Eo =  E VkEko = v kBk+() (4.7)
1 1 1

so that even if r is singular, when p is large enough, the first term

in (4.7) can be of rank q. The classical MUSIC algorithm fails when r is

singular, but the above method works.

A A
In order to study the limiting distribution of Pk' rk, k ..

we make the following notations:

ako = (1,eJ' k,...,e iq"k), (q+l)-vector.

Ao  = (a 1),...,aqo), (q+l)xq matrix.

B = diag(e ,...,e q), qxq diagonal matrix.

Theorem 1. Under the condition (A1 )

A A A as
I r z ( q...,r ) ~ ( rk , (4.8)

x (pi ...... , (4.9)
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Theorem 2. Under the condition (A2 ), the joint distribution of

AAn

AA

a n + j Tn , where

A A A

Tn (-r q-r"q),

tends to that of

Q-0-( PE q B- Ir -g k-i )-'(AoAo)-'A( i'J (Rok +A B-R (k)) (4.10)

1 L 01 3 0 2

where (R(k),R(k)) has a multivariate complex normal distribution and

q+( 1 j7(k-1) q+i Jrq(k-i)
Q = diag( E (k-1)ge,.., E (k-l)gke q . (4.11)

k-i k-i

Let R be a pxp Gaussian random matrix with the underlying variance

or4 and V be a qxp random matrix whose columns are iid multivariate

complex normal variables with mean zero and covariance matrix O2r.

Theorem 3. Under the conditions (A )-(A ), the random variables R k )

and R(k) in (4.10) can be characterized as follows:3

(i) R(k) is the submatrix of V formed by its (k+l)-th to
2

(k4.q+l)-th columns.
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(ii) R(k) is the submatrix formed by the (k+l)-th to3

(k+q+l)-th comumns and rows of R.

(iii) (R ,.,R' p q ) and (R( ),...,R( p - q ) ) are independently
2 '"2 3 ' 3

distributed.

From Theorems 2 and 3, it follows that the limiting distribution of

an+ j n  is q-variate complex normal with mean zero and covariance matrix

Q (E qkBk-Ir k-,)-v(P E qkBk-, r g k--)q-, (4.12)
1k=i

V = (A* )A*E E VesFksgks 6 4A(AA0)- + E E LkLs' 2r (4.13)
0 0  k s ~0 kas

E gg, k,s =1,...,p-q (4.14)ma=s+m 2-k 1 2

Jk- if k>s
Fks = _ if k < (4.15)

where J is a (p-q)x(p-q) matrix with only the entries in the diagonal

above the main diagonal as unities and rest as zeroes. The asymptotic
A -1

covariance of T alone is 2 times the real part of (4.12)

Remark 4.1. It is seen that the expressions for the covariance

A A
matrices of the estimates r and g given In (3.16) and (4.12) are very

complicated. Perhaps, here we have a case for the bootstrap method for

estimating the covariance matrix. The numerical computations involved in

the bootstrap method will be considered in a later communication.
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Remark 4.2. It is seen from (1.1) that the conjugate vector i(t)

has the model

i(t) -I -;(t) + 3(t), t - 1,...,N. (4.16)

with the covariance matrix of i(t) as

= W r A* + U21. (4.17)

Then

Gi =  (O''"'O'gq+ "'".91'.""O) (4.18)

which is similar to Gi of (3.8) with the components of the same g vector

written in the reverse order, is an eigen vector corresponding to the

smallest eigen value of 2. We can estimate q ...,g1 using the model

(4.16) in the same way as g ,...,gq+l is estimated using the model (1.1).

We have a developed method of combining the information proved by the

models (1.1) and (4.16) in obtaining an efficient estimate of gi,...,gq+l,

which will be given in a later communication.
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